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needed to compare protocols which produce similar levels of 
muscle activation, but differ in the magnitude of metabolites 
produced, or duration in which the exercised muscles are 
exposed to metabolites.
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Metabolic stress · Motor unit recruitment · Resistance 
training

Abbreviations
1RM  One-repetition maximum
AMPK  AMP-activated protein kinase
CAMKII  Calcium–calmodulin protein kinase II
EMG  Electromyography
FAK  Focal adhesion kinase
MAPK  Mitogen-activated protein kinase
mTORC1  Mechanistic target of rapamycin complex 1
TSC2  Tuberous sclerosis complex 2

Introduction

It is generally recommended for individuals to perform 
resistance training at least twice per week as part of a com-
prehensive exercise program (American College of Sports 
Medicine 2009). Chronic resistance training increases mus-
cle mass which may improve self-image (Hausenblas and 
Fallon 2006) and be of clinical importance for attenuating 
the risk of chronic disease (Wolfe 2006). As such, a greater 
understanding of the mechanisms governing muscle growth 
is necessary to ensure proper exercise programming and 
potential therapeutic alternatives to resistance exercise. 
Current physical activity guidelines recommend that indi-
viduals looking to increase muscle mass should exercise 
with a load corresponding to at least 70% of an individual’s 

Abstract Many reviews conclude that metabolites play an 
important role with respect to muscle hypertrophy during 
resistance exercise, but their actual physiologic contribu-
tion remains unknown. Some have suggested that metabo-
lites may work independently of muscle contraction, while 
others have suggested that metabolites may play a second-
ary role in their ability to augment muscle activation via 
inducing fatigue. Interestingly, the studies used as support 
for an anabolic role of metabolites use protocols that are 
not actually designed to test the importance of metabolites 
independent of muscle contraction. While there is some evi-
dence in vitro that metabolites may induce muscle hyper-
trophy, the only study attempting to answer this question 
in humans found no added benefit of pooling metabolites 
within the muscle post-exercise. As load-induced muscle 
hypertrophy is thought to work via mechanotransduction (as 
opposed to being metabolically driven), it seems likely that 
metabolites simply augment muscle activation and cause 
the mechanotransduction cascade in a larger proportion of 
muscle fibers, thereby producing greater muscle growth. 
A sufficient time under tension also appears necessary, as 
measurable muscle growth is not observed after repeated 
maximal testing. Based on current evidence, it is our opin-
ion that metabolites produced during resistance exercise do 
not have anabolic properties per se, but may be anabolic in 
their ability to augment muscle activation. Future studies are 
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one-repetition maximum (1RM) strength (American College 
of Sports Medicine 2009). This statement, however, does not 
account for the large body of scientific evidence demonstrat-
ing similar increases in muscle size when comparing lower 
(30–50% 1RM) and higher (75–90% 1RM) loads, provided 
the exercises are performed until volitional failure (Mitchell 
et al. 2012; Ogasawara et al. 2013; Morton et al. 2016). Fur-
thermore, blood flow-restricted exercise has also been shown 
to promote similar increases in muscle size to that of low 
load training to volitional failure (Fahs et al. 2015; Farup 
et al. 2015) and traditional high load training (Laurentino 
et al. 2012). The notion that all of these protocols produce 
similar muscle hypertrophy has led many (Schoenfeld 2013; 
Ozaki et al. 2015, 2016) to hypothesize that these differ-
ent exercise modalities may be working through alternative 
mechanisms (i.e., metabolites) to induce muscle growth.

Therefore, the purpose of this review is to discuss the cur-
rent evidence surrounding the role that metabolite produc-
tion during exercise (e.g., lactate, inorganic phosphate) has 
in regulating exercise-induced skeletal muscle hypertrophy. 
Specifically, we are interested in answering the question as 
to whether a heightened production and/or prolonged dura-
tion of metabolites (in addition to that which is typically 
present during resistance exercise) has an additive effect on 
muscle growth. Notably, it is our opinion that increasing 
the duration and/or production of metabolites during resist-
ance exercise does not have anabolic properties per se, but 
rather promotes muscle hypertrophy indirectly via induc-
ing muscle fatigue and augmenting muscle activation. The 
act of repeated muscle contraction appears to be of primary 
importance to fatigue the muscle and stress a larger propor-
tion of motor units. While there are an overwhelming num-
ber of potential mechanisms that may contribute to skeletal 
muscle hypertrophy during (e.g., blood flow, cytokines) or 
independent (e.g., amino acids, testosterone supplementa-
tion) of resistance exercise, this review focuses solely on the 
contributions of metabolites to muscle hypertrophy.

How does traditional resistance exercise induce 
skeletal muscle hypertrophy?

While the purpose of this review is not to provide an in-depth 
review of the molecular mechanisms governing contraction-
induced muscle hypertrophy (for a review see Marcotte et al. 
2015), a brief overview of the proposed molecular mecha-
nism will provide the reader with the necessary information 
to detail why, in our opinion, current evidence would suggest 
that metabolites may not have direct anabolic properties. It is 
currently thought that muscle growth via resistance exercise 
occurs through a process of mechanotransduction, in which 
the mechanical stress of muscle contraction is converted 
into a chemical signal. This is thought to work through the 

binding of individual focal adhesion proteins such as focal 
adhesion kinase (FAK), which collectively form focal adhe-
sions attached to integrin receptors (Goldmann 2012). These 
focal adhesions are thought to mediate the mechanotransduc-
tion process, by allowing for the tension placed on the mus-
cle cell to be transmitted from the extracellular matrix, to the 
inside of the cell and to the cell nucleus (Goldmann 2012). 
This chemical signal then increases muscle mass through 
activation of the mechanistic target of rapamycin com-
plex 1 (mTORC1), but this complex is not solely activated 
through resistance exercise, as other stimuli such as growth 
factors and amino acids can also increase mTORC1 activa-
tion (Marcotte et al. 2015). The specific process by which 
resistance exercise activates the mTORC1 complex is not 
entirely understood, but ultimately involves the removal of 
tuberous sclerosis complex 2 (TSC2) which then allows for 
activation of the mTORC1 (Jacobs et al. 2017). While resist-
ance exercise may also assist in elevating protein synthesis 
by translocating the mTORC1 complex to the lysosome 
where it can be activated (Jacobs et al. 2017), this process 
is also facilitated by the consumption of amino acids (Bar-
Peled and Sabatini 2014). Therefore, the combined effect of 
removing the mTORC1 inhibitor and relocating mTORC1 
to the lysosome produces robust muscle hypertrophy (West 
and Baar 2013).

Can metabolites induce skeletal muscle 
hypertrophy through an alternate mechanism?

It has been suggested that muscle hypertrophy occurring 
during blood flow restriction may not work via mecha-
notransduction given its low mechanical stress (Pearson 
and Hussain 2015). Alternatively, intramuscular (Suga et al. 
2009, 2010, 2012) and whole blood (Takarada et al. 2000a, 
b; Takano et al. 2005) metabolite measurements detail large 
accumulations during blood flow restriction protocols, but 
the specific measurement techniques are not the focus of 
this review. The idea that blood flow restriction exercise 
activates the mitogen activated protein kinase (MAPK) 
pathway (Fry et al. 2010), which may be independent of the 
exercise load (Dentel et al. 2005), has led to the hypothesis 
that a metabolic sensor (as opposed to a mechanical sen-
sor) may regulate the MAPK pathway (Dentel et al. 2005) 
providing a potential mechanism for muscle growth that is 
not load dependent. The metabolites which are commonly 
hypothesized to have anabolic effects are those which have 
been shown to be altered in response to blood flow-restricted 
exercise protocols [e.g., increased lactate (Takarada et al. 
2000a, b), increased inorganic phosphate (Suga et al. 2012)], 
under the assumption that it is the increase in metabolite 
production that augments muscle growth. This would seem 
to be a plausible explanation given that applying blood flow 
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restriction during low load resistance exercise increases 
muscle size compared to that of a repetition matched con-
trol group in the absence of blood flow restriction (Nielsen 
et al. 2012). In this review, we will briefly discuss the current 
evidence supporting the anabolic potential of a few metabo-
lites which have been suggested by some to augment muscle 
growth during resistance exercise. The purpose of this sec-
tion is not to overview the anabolic potential of each metabo-
lite which is produced during resistance exercise, but rather 
to briefly discuss the aforementioned metabolites commonly 
stated to have anabolic effects. It is important to understand 
that during resistance exercise, there are numerous metabo-
lites being produced that could be playing a role. Although 
this is not an exhaustive review of every potential metabo-
lite present following resistance exercise, any metabolite 
produced would still be accounted for within the chronic 
training studies.

Of the metabolites produced during resistance exercise, 
lactate appears to have the most support as a potential ana-
bolic molecule for muscle hypertrophy (Nalbandian and 
Takeda 2016). Support for lactate having anabolic proper-
ties comes from cell culture studies where it has been shown 
to induce myogenesis (Willkomm et al. 2014; Oishi et al. 
2015) and increase phosphorylation of p70S6K (a down-
stream target of mTORC1) (Oishi et al. 2015), providing 
some evidence that metabolites may induce muscle hyper-
trophy in vitro. There is, however, limited evidence in vivo 
with only one study illustrating that 30 min of treadmill run-
ning for 4 weeks produced greater increases (relative to an 
exercising control group) in the muscle weight of rats after 
oral lactate (100 mg/kg) and caffeine (36 mg/kg) consump-
tion (Oishi et al. 2015). The authors speculated that lactate 
may be anabolic via alterations in proteins expressed in 
the exercised rat muscles, which included increased myo-
genin (which regulates differentiation of satellite cells), 
decreased myostatin (a negative regulator of muscle growth), 
and increased follistatin (an inhibitor of myostatin). The 
authors also acknowledged that the caffeine supplementa-
tion may have contributed to the anabolic stimulus through 
increased intracellular calcium, but the lactate and caffeine 
compounds were not analyzed independently in the in vivo 
study. It is also possible that lactate may work to increase 
muscle size via indirectly increasing testosterone production 
as was shown in rat cells bathed in lactate (10 mmol for 1 h) 
(Lin et al. 2001); however, as mentioned in a recent review 
(Nalbandian and Takeda 2016), there is no evidence to sup-
port these findings in vivo. Even if lactate were to increase 
testosterone in humans, acute elevations in endogenously 
produced testosterone which result from resistance exercise 
have been shown to have no added benefit for increasing 
muscle size (West et al. 2010). Inorganic phosphate has 
received some support as a potential anabolic molecule, but 
these adaptations are related to bone tissue as opposed to 

skeletal muscle (Beck 2003; Spina et al. 2013). Finally, reac-
tive oxygen species have garnered some support for having 
anabolic effects in vitro via upregulating insulin-like growth 
factor 1 (IGF-1), but this effect appears to occur in a dose-
dependent fashion with higher levels of reactive oxygen spe-
cies having a potentially detrimental effect on IGF-1 signal-
ing (Barbieri and Sestili 2012).

While a number of reviews have been published centered 
on the importance of metabolic accumulation for inducing 
muscle growth in humans (Schoenfeld 2013; Ozaki et al. 
2015, 2016), there are currently no studies (in humans) 
which provide direct evidence that metabolites produced 
during resistance exercise facilitate muscle growth greater 
than that of muscle contraction itself. All the current studies 
used as support for the anabolic role of metabolites simply 
detail that metabolites are associated with muscle growth. 
In other words, these studies are not designed to assess the 
role of metabolites because it is not just the metabolic envi-
ronment that is being altered, but, rather, some other train-
ing variable is manipulated which subsequently results in a 
greater accumulation of metabolites. This is a very impor-
tant concept because the level of local muscle fatigue (i.e., 
reaching or approaching volitional failure) appears to be 
the most important factor with respect to muscle growth 
(Mitchell et al. 2012; Morton et al. 2016) and this is likely 
related to the level of muscle activation. In other words, 
metabolites are present because the increased level of effort 
equates to more energy being utilized and more metabolites 
being produced, and thus represent more a consequence of 
contraction rather than a cause of muscle growth. Here are 
just a few examples of study designs used to support the 
role of metabolites for inducing muscle hypertrophy: (1) 
hypoxic environments (Nishimura et al. 2010); (2) blood 
flow-restricted exercise (Takarada et al. 2000b); (3) eccentric 
vs. concentric contractions (Smith and Rutherford 1995); 
(4) short vs. long muscle contractions (Schott et al. 1995; 
Tanimoto et al. 2008); (5) short vs. long rest periods pro-
vided between multiple sets of exercise [(Kraemer et al. 
1987; Villanueva et al. 2015); and (6) rest periods that are 
provided within sets (i.e., breaking up a 10RM into two sets 
of 5 repetitions] (Goto et al. 2005). Two of these studies 
are even titled “The role of metabolites in strength train-
ing” (Schott et al. 1995; Smith and Rutherford 1995) despite 
not directly testing the role of metabolites in strength train-
ing. In fact, none of these aforementioned studies assess the 
effects of metabolites independent of muscle contraction, 
which makes it difficult to assess whether the greater muscle 
growth is due to the act of muscle contraction itself, or the 
additional metabolites that are produced. Importantly, and 
as suggested previously (Moritani et al. 1992), metabolites 
may be anabolic in their ability to augment muscle activation 
and this idea has received further support (Loenneke et al. 
2011) after the role of exercise-induced hormonal elevations 
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(also thought to potentially work independently of muscle 
contraction) were shown to be of little importance for mus-
cle growth (West et al. 2010). Although fatigue is likely 
multifactorial and cannot be solely attributed to metabolites, 
fatigue has been shown to stimulate the recruitment of addi-
tional higher threshold motor units (Bigland-Ritchie et al. 
1986).

Metabolites may induce muscle growth indirectly 
via motor unit recruitment

Motor unit recruitment assessed via electromyography

Inorganic phosphate and hydrogen ion accumulation may 
contribute to muscle hypertrophy by inhibiting cross-bridge 
cycling and inducing muscle fatigue (Debold 2012). Elec-
tromyography (EMG) amplitude is often used as an indirect 
measure of motor unit recruitment based on the assumption 
that more motor units firing at a given time will produce 
more action potentials and thus a higher EMG amplitude. 
Blood flow restriction has been shown to augment EMG 
amplitude over unrestricted repetition and load matched pro-
tocols (Yasuda et al. 2009; Lauver et al. 2017), while both 
protocols performed to volitional failure result in similar 
EMG amplitudes (Wernbom et al. 2009). Since low load 
protocols that are repetition matched produce greater muscle 

growth when blood flow restriction is applied (Laurentino 
et al. 2012), but exercising to volitional failure negates 
these differences (Fahs et al. 2015; Farup et al. 2015), it 
would appear that the primary benefit of applying blood 
flow restriction during resistance exercise may be related to 
greater muscle fatigue (Loenneke et al. 2012a). This is sup-
ported by the fact that the application of blood flow restric-
tion does not augment muscle growth occurring during high 
load resistance exercise (Laurentino et al. 2008) and this 
is likely because muscle activation cannot be appreciably 
augmented (Takarada et al. 2000b; Dankel et al. 2017a), 
since high load exercise is already very fatiguing. If metabo-
lites could induce muscle growth independent of the tradi-
tional mechanotransduction cascade, high load resistance 
exercise would likely benefit from the application of blood 
flow restriction, but this is not the case (Laurentino et al. 
2008). Therefore, it seems more likely that it is the recruit-
ment of higher threshold motor units, and thus the activa-
tion of a large proportion of muscle fibers that is of primary 
importance for muscle growth. While metabolites would be 
produced during both high and low load resistance exercise, 
their contribution to motor unit recruitment would be par-
ticularly evident during low load resistance exercise given 
that higher loads will recruit more motor units at the onset 
of exercise to produce the higher force that is necessary 
(Fig. 1). It is our opinion that metabolites are not manda-
tory for muscle growth, but provide one mechanism through 

Fig. 1  While metabolites are 
produced during both high 
load and low load resistance 
exercise, they appear to be 
particularly beneficial during 
low load exercise in their ability 
to assist with fatiguing lower 
threshold motor units. This 
then causes the recruitment of 
additional motor units (and thus 
muscle fibers) that were not 
active at the start of exercise. 
Notably, it is our hypothesis 
that metabolites do not provide 
an alternative mechanism for 
inducing muscle hypertrophy 
during resistance exercise, but 
are rather an alternative means 
to increase muscle activation. 
It also appears as though each 
muscle fiber must be acti-
vated enough times within a 
given duration to allow for the 
mechanical stimulus to produce 
a sufficient chemical signal 
within the cell to initiate muscle 
hypertrophy
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which additional motor units can be recruited as a result of 
local muscle fatigue.

The argument can be made, however, that blood flow 
restriction exercise does not activate as many higher thresh-
old motor units as traditional high load training (see Fig. 6 
in Manini and Clark 2009). We believe this is more likely an 
artifact of the load being lifted rather than a true discrepancy 
in motor unit activation, and may detail a potential limitation 
with using surface EMG amplitude to directly infer motor 
unit recruitment. It has been shown that during fatiguing 
contractions, some motor units may not only reduce their fir-
ing frequencies, but shut off completely to allow for recovery 
from fatigue (Person 1974). As a sufficient force is still being 
produced to maintain the appropriate force output to con-
tinue exercising, these fatigued motor units will pass their 
force production duties onto other motor units (termed sub-
stitution). This demonstrates that the control of motor units 
during fatiguing contractions may work independently of 
the common drive theory (De Luca et al. 1982; De Luca and 
Erim 1994) as each motor unit can have their own control 
properties within the motor neuron pool. This individual-
ized control would allow for the recovery of motor units 
during prolonged fatiguing contractions (Westgaard and De 
Luca 1999). Notably, this has been shown to occur during 
isometric contractions of the knee extensors producing force 
up to 50% of MVC, and is more pronounced during dynamic 
contractions when changes in movement patterns are present 
(Person 1974).

The occurrence of motor unit substitution (Person 1974) 
details a limitation with inferring muscle activation from 
EMG amplitude when comparing protocols using different 
loads. Such studies can be potentially misleading, as exercis-
ing with a heavier load does not allow for motor unit sub-
stitution since a higher force output must be maintained. 
Therefore, low load exercise to volitional failure is likely 
activating the same proportion of motor units (and thus mus-
cle fibers) to that of high load training to volitional failure, 
although this would not necessarily be evident based on 
the results of EMG amplitude (Fig. 2). In other words, the 
EMG amplitude at a given time point would be lower dur-
ing low load resistance exercise, even if the same number of 
motor units have been stimulated, and this is because some 
motor units have been substituted and subsequently turned 
off when the EMG amplitude is recorded. It would make 
conceptual sense that both high load and low load training 
to volitional failure would produce similar levels of muscle 
activation given the muscle is incapable of producing the 
force necessary to complete another repetition.

Motor unit recruitment assessed via phosphorus‑31 
magnetic resonance spectroscopy

An alternative, non-invasive method used to estimate mus-
cle activation involves a method called phosphorus-31 mag-
netic resonance spectroscopy (Park et al. 1987; Vandenborne 
et al. 1991). This method is used to assess the recruitment of 

Fig. 2  Fibers that are depicted in white would not hypertrophy as 
they have not been activated to undergo the mechanotransduction cas-
cade. Fibers depicted in black are currently activated and assisting in 
force production and will undergo the mechanostransduction cascade 
to induce muscle growth. The black striped design depicts a muscle 
fiber that has been activated, but has not contracted a sufficient num-
ber of times to induce the hypertrophy stimulus. Fibers depicted in 
gray have already received the mechanotransduction stimulus and 

will hypertrophy but have been selectively turned off to allow for 
recovery. If these protocols were assessed using electromyography 
(EMG) amplitude, the level of muscle activation would be propor-
tional to the number of solid black and black striped muscle fibers. 
Notably, this explains why EMG amplitude often favors the high load 
condition even though a similar number of muscle fibers received the 
stimulus for muscle growth
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different muscle fibers based on the depletion of ATP, reduc-
tion in pH and total phosphate, and increase in inorganic phos-
phate, all of which will occur more rapidly in type II muscle 
fibers during exercise. Importantly, this method of assessing 
muscle fiber contribution during exercise is less sensitive to 
changes in exercise intensity and is more related to involve-
ment of muscle fibers based on energy metabolism (Vanden-
borne et al. 1991). One research group has used this method 
to conduct several studies comparing motor unit activation 
between low load blood flow restriction exercise and high 
load exercise, while assessing motor unit recruitment based 
on the level of inorganic phosphate splitting (Suga et al. 2009, 
2010, 2012). When individuals performed 60 repetitions of 
plantar flexion exercise at 20% 1RM with and without blood 
flow restriction (Suga et al. 2010), it was shown that only 
those exercising with blood flow restriction recruited higher 
threshold motor units. Another study by the same research 
group illustrated that blood flow restriction exercise did not 
increase the activation of type II muscle fibers to the extent 
of high load exercise (Suga et al. 2009). Since both the blood 
flow restriction (20% 1RM) and high load condition (65% 
1RM) completed the same number of repetitions (60 rep-
etitions), the hypertrophic potential was likely different as a 
much greater number of repetitions can be completed at 20% 
1RM with blood flow restriction (51 repetitions) as compared 
to 50% 1RM without blood flow restriction (25 repetitions) 
(Barcelos et al. 2015). Therefore, it is likely that the blood 
flow restriction protocol was not very fatiguing, and as such 
fewer metabolites were produced, and the lack of motor unit 
recruitment actually does not provide much information in 
this case because lower motor unit recruitment would be 
expected. A follow-up study from this research group illus-
trated that multi-set protocols comparing blood flow restric-
tion to high load training yielded very similar responses with 
respect to metabolite production and recruitment of higher 
threshold motor units (Suga et al. 2012). Since this is more 
representative of the majority of blood flow restriction proto-
cols that are employed (Loenneke et al. 2012b; Dankel et al. 
2016b), it seems likely that both indeed result in similar levels 
of motor unit recruitment/muscle activation. This method is 
also not without limitation and future studies may wish to use 
immunohistochemistry techniques to examine muscle biopsy 
samples taken post-exercise to confirm that this method of 
assessing muscle activation is valid.

What types of studies are needed to determine 
the role of metabolites in muscle hypertrophy?

Using the electrical stimulation model

It has been proposed that the role of metabolites can be 
tested by comparing electrical stimulation with and without 

blood flow restriction provided there are no differences in 
motor unit recruitment (Meyer 2006), as any differences in 
muscle hypertrophy could not be attributed to differences in 
muscle activation. Although electrical stimulation studies 
have demonstrated a greater effect when applying blood flow 
restriction (Natsume et al. 2015; Gorgey et al. 2016), it is 
unknown whether differences in muscle activation were pre-
sent as this was not measured and may be difficult to assess 
given the artifact produced by the pulse of the electrical 
stimulus (Collins 2007). Evidence for a role of the central 
nervous system during electrical stimulation exists, in that 
anesthetic nerve blockage (which removes the influence of 
the central nervous system) results in a significant torque 
reduction during electrical stimulation (Collins 2007). This 
involvement of the central nervous system details that sen-
sory fibers (group III and IV afferents) may provide feedback 
to the central nervous system to alter motor command (Lau-
rin et al. 2015) and the involvement of the central nervous 
system is apparent regardless of whether the electrical stimu-
lation is applied to the nerve or muscle belly (Bergquist et al. 
2012), but motor unit activity during electrical stimulation 
does not follow the orderly recruitment pattern commonly 
observed with voluntary exercise (Collins 2007). It is pos-
sible that electrical stimulation can be used to test the role 
of metabolites, provided maximal electrical stimulation is 
used in which no more motor units can possibly be recruited. 
Therefore, differences in muscle growth could not be attrib-
uted to differences in motor unit recruitment, although this 
would likely be an uncomfortable protocol to complete.

What other models can be tested?

To answer this specific question, researchers should avoid 
simply looking at the level of metabolites produced dur-
ing different protocols, and instead manipulate (via study 
design) a control and experimental group that receive the 
same stimulus but differ in metabolite production. Our lab-
oratory has recently employed a study in which we com-
pared one set of exercise to volitional failure with another 
condition, performing the exactly same protocol followed 
by 3 min of post-exercise blood flow restriction, which was 
done to pool metabolites within the muscle (Dankel et al. 
2016a). Therefore, any difference between conditions could 
be attributed to the intervention (i.e., the 3 min post-exercise 
blood flow restriction period). Not only was this strategy 
ineffective for augmenting muscle growth, but it appeared 
to be detrimental, specifically in the female population. 
Being that the metabolites were likely to be pooled within 
the muscle post-exercise (this was indirectly assessed via 
depressed torque), the metabolites did not have an opportu-
nity to work synergistically with muscle contraction occur-
ring with additional sets of exercises, and thus this would 
refute the hypothesis that metabolites may induce muscle 
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hypertrophy independent of muscle contraction. Of course, 
we cannot rule out the possibility that restricting blood flow 
to pool metabolites may have had a detrimental sex-specific 
effect on muscle growth, possibly through reduced nutri-
ent delivery (Timmerman et al. 2010). It is also possible 
that the reduced ATP synthesis and accumulation of AMP, 
ADP and oxidative stress from restricting blood flow in 
the absence of exercise (Goldfarb et al. 2008; Garten et al. 
2015) may have activated the AMP-activated protein kinase 
(AMPK) pathway, potentially limiting the mTORC1 activ-
ity and contributing to protein degradation (Atherton et al. 
2015). It remains unclear, however, why this would produce 
sex-specific differences in muscle hypertrophy. Future stud-
ies wishing to assess the specific role of metabolites should 
attempt to alter the metabolic environment within the exer-
cised muscle while holding constant as many variables as 
possible. Additionally, studies should attempt to assess the 
independent effects of metabolites to answer the specific 
question: Can metabolites augment muscle growth through 
an independent mechanism not reliant on inducing muscle 
fatigue?

Why would low load exercise work any differently?

Given the previously stated idea that muscle growth is 
thought to work via mechanotransduction (i.e., induced by 
muscle contraction), it may seem counterintuitive that exer-
cising with a lower load would change the mechanism caus-
ing muscle growth. Regardless, it has been stated that “…it 
is questionable whether such mechanotransduction processes 
would contribute to blood flow restriction (BFR) resistance 
training-induced hypertrophy given its low mechanical stress 
nature.” (Pearson and Hussain 2015). The idea that the load 
or intensity of muscle contraction during low load resistance 
exercise is insufficient to induce the mechanotransduction 
cascade would seemingly go against how motor units are 
presently thought to contribute to force. To illustrate, the 
twitch force of a given motor unit does not differ based on 
the magnitude of force (e.g., % maximal isometric contrac-
tion) that is being produced (LeFever and De Luca 1982); 
thus, each firing of a motor neuron sends a nerve impulse 
that always causes the innervated muscle fiber to produce the 
maximal force possible. The maximal amount of force that 
is produced by an individual muscle fiber may differ based 
on fatigue or the Treppe effect (slight increase in tension 
with repeated twitches), but it will still be contracting at its 
maximal capability. In other words, a human can alter their 
voluntary force output through the number of motor units 
recruited, but an individual motor unit cannot.

The overall stimulus to each muscle fiber must then 
be related to the number of times it is stimulated, given 
that each stimulus always produces 100% of its possible 

contractile force at a given time. Therefore, it is not neces-
sarily the level of contractile force produced by the muscle 
fibers that is of importance, but, rather, the proportion of the 
muscle (i.e., the percentage of muscle fibers) that is required 
to produce force, given that overall muscle hypertrophy will 
be proportional to the number of muscle fibers stimulated 
(Marcotte et al. 2015). As such, any protocol producing a 
high muscle activation and sufficient number of contractions 
within each muscle fiber would likely result in the activa-
tion of mTORC1 in a similar proportion of muscle fibers, 
thereby producing a similar hypertrophic stimulus. The idea 
that blood flow-restricted exercise is also increasing muscle 
size through activation of mTORC1 has been shown previ-
ously (Gundermann et al. 2014), which would support the 
notion that they may be working through the same contrac-
tion-dependent activation of mTORC1. Furthermore, a study 
comparing 12 weeks of knee extension exercises found that 
both low load (30% 1RM), blood flow restriction exercise 
and high load (6–10 RM) exercise resulted in similar acute 
and chronic changes in the expression of 29 genes related 
to muscle function, with no significant differences found 
between conditions for any of the genes measured (Ellef-
sen et al. 2015). These studies support our hypothesis that 
these protocols may be working via the same mechanism, 
and it would be hard to rationalize the existence of a point 
along the loading spectrum (i.e., 0–100% 1RM) at which the 
hypertrophic stimulus from resistance exercise would switch 
from being mechanically driven to becoming metabolically 
driven.

Is muscle activation the sole driver of muscle 
hypertrophy?

Although it appears that a muscle fiber must be activated 
during resistance exercise to receive the mechanotransduc-
tion stimulus, activation of the muscle fiber per se is not 
sufficient to induce muscle growth. For example, we have 
previously conducted a study in which individuals per-
formed maximal voluntary isometric and isotonic (1RM) 
testing every day for 21 straight days and this was insuf-
ficient to induce muscle growth (Dankel et al. 2017b). The 
maximal nature of these tests would suggest that all of 
the motor units that could be voluntarily activated were 
indeed activated; however, this did not produce muscle 
growth. It should be mentioned that these individuals per-
formed exactly the same protocol, in addition to three sets 
of exercises on the contralateral arm and this was suffi-
cient in inducing muscle growth. Collectively, these find-
ings would suggest that not simply activation, but also a 
sufficient number of motor unit firings within a reason-
able duration (i.e., a sufficient time under tension) may be 
necessary to trigger this mechanotransduction cascade in 
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each muscle fiber (Fig. 2). This may be related to an insuffi-
cient amplitude and/or duration of intracellular calcium, as 
short duration/high amplitude calcium signals activate the 
calcium–calmodulin protein kinase II (CaMKII) pathway 
(Chin 2005). Intracellular calcium (Ito et al. 2013) and the 
synthesis of phosphatidic acid (You et al. 2014) may also 
be limiting the magnitude of muscle growth present during 
such a short duration of muscle contraction, as both have 
been postulated to play an important role upstream of the 
mTORC1 pathway. It is likely that whatever is causing the 
lack of muscle hypertrophy is related to a reduced activa-
tion of the mTORC1 pathway, as blocking this pathway 
completely abolishes compensatory hypertrophy in rats 
(Bodine et al. 2001) and largely reduces the muscle pro-
tein synthesis response to resistance exercise in humans 
(Gundermann et al. 2014).

The stimulus necessary to induce muscle growth does 
not appear to be difficult to achieve, as even three 10 s 
isometric contractions per day was shown to induce meas-
urable muscle hypertrophy. It is our hypothesis that the 
same number of active motor units and the same number 
of firings within each motor unit (i.e., the same percentage 
of muscle fibers contracting the same number of times) 
would be insufficient to induce muscle growth, if these 
motor unit firings were spread throughout the day. In other 
words, would thirty 1 s maximal isometric contractions 
dispersed evenly throughout the day produce the same 
results as the three 10 s isometric contractions used by 
Ikai and Fukunaga (1970)? If not, then it appears that it 
is not strictly the proportion of activated motor units and 
the number of motor unit firings (as these would be very 
similar between conditions), but rather a sufficient num-
ber of motor unit firings within a given duration may be 
necessary to induce a sufficient chemical change capable 
of inducing muscle growth (Fig. 1). This may be related to 
accumulations of phosphatidic acid which has been shown 
to be of critical importance for the mechanical activa-
tion of mTORC1 (Hornberger et al. 2006; O’Neil et al. 
2009). The combination of the percentage of muscle fibers 
stimulated, and the duration in which each is stimulated, 
would appear to be the most important factors governing 
contraction-induced muscle hypertrophy, as our labora-
tory has shown that even maximally flexing the elbow 
flexors through the full range of motion with no external 
load produced similar muscle hypertrophy to that of high 
load resistance exercise (Counts et al. 2016). Although 
the longer duration in which the muscle fibers are placed 
under tension would produce more metabolites given the 
greater energy utilization, it is our opinion that metabo-
lites are simply permissive for muscle growth rather than 
being obligatory.

Conclusion

It is commonly stated that the accumulation of metabolites 
during resistance exercise is one of the mechanisms respon-
sible for the hypertrophic stimulus. The idea that low load 
resistance training and low load blood flow-restricted resist-
ance training produce similar increases in muscle size to 
that of high load resistance training is commonly used as 
evidence for this statement. It is currently unknown whether 
metabolites produced during resistance exercise have ana-
bolic properties that are independent of muscle contraction, 
or whether they are anabolic through their ability to augment 
muscle activation by inducing muscle fatigue. Based on the 
available evidence, it is our opinion that the anabolic role 
of exercise-induced metabolites lies in their ability to assist 
with augmenting muscle activation. To test this hypothesis, 
future studies should compare two identical protocols that 
differ only based on the presence, magnitude, or duration of 
metabolites, with careful caution to not allow metabolites to 
alter the level of fatigue produced between protocols.
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